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Abstract
Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are pre-

sented. The final-state interaction effects are generated via single-gluon exchange mechanism. The

formalism of light-cone wave functions is used to derive general expressions in terms of overlap of

wave-function amplitudes describing the different orbital angular momentum components of the

nucleon. In particular, the model predictions show a dominant contribution from S- and P -wave

interference in the Sivers function and a significant contribution also from the interference of P and

D waves in the Boer-Mulders function. The favourable comparison with existing phenomenologi-

cal parametrizations motivates further applications to describe azimuthal asymmetries in hadronic

reactions.
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I. INTRODUCTION

Transverse momentum dependent parton distributions (TMDs), as an important exten-
sion to the usual Feynman parton distributions, have attracted much attention in hadronic
physics from both experiment and theory sides. Various hadronic processes have been used
and proposed to study these distributions [1–21]. Together with the generalized parton dis-
tributions (GPDs) (for reviews, see [22–26]), TMDs shall lead us to a comprehensive picture
of parton distributions inside the nucleon, in particular, in a three-dimension fashion.

Phenomenologically, in order to extract these distribution functions from experiments,
we have to ensure that the QCD factorization applies in the associated processes. These
issues have been extensively discussed in the last few years, and the relevant factorization
theorem has been built up for a number of semi-inclusive processes, such as semi-inclusive
hadron production in deep inelastic scattering and low transverse momentum Drell-Yan
lepton pair production in hadronic collisions [27–29]. In the last few years, there has also
been a remarkable experimental progress on experimental measurements (see Ref. [21] and
references therein). More importantly, the proposed future experiments shall provide more
constraints on these distribution functions.

Meanwhile, reasonable model calculations of these transverse momentum dependent par-
ton distributions have been proposed [30–63]. These calculations promoted our understand-
ing of the nucleon structure, and have been playing very important role as a first step to
describe the experimental observations of the associated phenomena. In particular, these
models provide us an intuitive way to connect the physical observables and the key input
for the nucleon structure model, such as the quark spin and orbital angular momentum
contributions to the proton spin.

Transverse momentum dependent quark distributions are defined through the following
quark-density matrix

M(x,k⊥) =

∫
dξ−d2ξ⊥
(2π)3

e−ik·ξ〈PS|ψ̄(ξ)L†
ξL0ψ(0)|PS〉 , (1)

where x and k⊥ are the longitudinal momentum fraction and transverse momentum carried
by the quark, respectively. Nucleon’s momentum P is dominated by the plus component
P+ = (P 0 + P z)/

√
2, and S represents the polarization vector. In the above equation,

the gauge link L is very important to retain the gauge invariance and leading to nonzero
naive-time-reversal-odd (T-odd) quark distributions. Among the leading order eight TMD
quark distributions, six of them are called the naive-time-reversal even (T-even), whereas
the rest two belong to the T-odd distributions. One is the so-called quark Sivers function,
which describes the quark transverse momentum distribution correlated to the transverse
polarization vector of the nucleon. The other is the so-called Boer-Mulders function, and
usually interpreted as the transverse momentum correlated with the quark transverse po-
larization. Both quark distributions contribute to the azimuthal asymmetries in hadronic
reaction processes.

In Ref. [44], we have calculated the T-even quark distributions in a light-cone quark model,
extending previous works on the parton distribution functions (PDFs) [35], the GPDs [64–
67], and nucleon form factors [68]. Such a model, based on the light-cone wave-function
(LCWF) overlap representation, is able to capture the relevant information on the three-
quark contribution to different observables. These calculations are well suited to illustrate
the relevance of the different orbital angular momentum components of the nucleon wave
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function, and provide an intuitive picture for the physical meaning of the TMD quark dis-
tributions. Moreover, they can be regarded as initial input for phenomenological studies for
the semi-inclusive processes where TMD quark distributions play a very important role [70].

In this paper, we extend these works to the T-odd quark distributions. The unique fea-
ture for the latter distributions is the final/initial state interaction effects. Without these
effects, the T-odd parton distributions would vanish. In the model calculation, these inter-
actions are calculated by taking into account the one-gluon exchange mechanism between
the struck quark and the nucleon spectators described by (real) LCWFs. This approach
is complementary to a recent work [71] where the rescattering effects are incorporated in
augmented LCWFs containing an imaginary phase which depends on the choice of advanced
or retarded boundary condition for the gauge potential in the light-cone gauge. Recently,
there has also been interesting study to go beyond the one-gluon exchange approximation,
by resumming all order contributions [61, 62].

The rest of the paper is organized as follows. In Sec. II, we briefly introduce the light-
cone quark model, explaining its physical content and giving results for the light-cone wave-
function amplitudes describing the different orbital angular momentum components of the
nucleon state. In Sec. III, we derive the quark Sivers function. We present a general
formalism in terms of overlap of light-cone wave-function amplitudes, and then apply it to
a specific light-cone quark model wave function. The corresponding formalism for the Boer-
Mulders function is described in Sec. IV. The model results for the T-odd distributions are
presented in Sec. V and compared to different phenomenological parametrizations. Finally,
we conclude with a section summarizing our findings.

II. LIGHT-CONE AMPLITUDES IN A CONSTITUENT QUARK MODEL

The wave-function amplitudes in light-cone quantization for the three-quark Fock state
of the nucleon has been studied extensively in the literature [69]. According to the total
quark orbital angular momentum projection, these wave-function amplitudes are classified
into lz = 0, lz = 1, lz = 2, lz = −1 components for total spin +1/2 of nucleon, i.e.,

|P ↑〉uud = |P ↑〉lz=0
uud + |P ↑〉lz=1

uud + |P ↑〉lz=−1
uud + |P ↑〉lz=2

uud . (2)

For completeness, we list the parametrization for these wave-function amplitudes following
Refs. [72–74]:

|P ↑〉lz=0
uud =

∫
d[1]d[2]d[3]

(
ψ

(1)
uud(1, 2, 3) + iǫαβk1αk2βψ

(2)
uud(1, 2, 3)

)

×ǫ
ijk

√
6
b† ui↑ (1)

(
b†uj↓ (2)b

† d
k↑(3)− b† dj↓ (2)b

†u
k↑ (3)

)
|0〉 , (3)

|P ↑〉lz=1
uud =

∫
d[1]d[2]d[3]

(
k+1⊥ψ

(3)
uud(1, 2, 3) + k+2⊥ψ

(4)
uud(1, 2, 3)

)

×ǫ
ijk

√
6

(
b†ui↑ (1)b

†u
j↓ (2)b

† d
k↓(3)− b† di↑ (1)b

†u
j↓ (2)b

†u
k↓ (3)

)
|0〉 , (4)

|P ↑〉lz=−1
uud =

∫
d[1]d[2]d[3] k−2⊥ψ

(5)
uud(1, 2, 3)

×ǫ
ijk

√
6
b† ui↑ (1)

(
b†uj↑ (2)b

† d
k↑(3)− b† dj↑ (2)b

†u
k↑ (3)

)
|0〉 , (5)
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|P ↑〉lz=2
uud =

∫
d[1]d[2]d[3] k+1⊥k

+
3⊥ψ

(6)
uud(1, 2, 3)

×ǫ
ijk

√
6
b†ui↓ (1)

(
b† dj↓ (2)b

†u
k↓ (3)− b†uj↓ (2)d

†
k↓(3)

)
|0〉 , (6)

where α, β = 1, 2 are transverse indexes and k±i⊥ = kxi ± kyi . In Eqs. (3)-(6) the integration
measures are defined as

d[1]d[2]d[3] =
dx1dx2dx3√
x1x2x3

δ

(
1−

3∑

i=1

xi

)
d2k1⊥d

2k2⊥d
2k3⊥

[2(2π3)]2
δ

(
3∑

i=1

ki⊥

)
, (7)

with xi the fraction of the longitudinal nucleon momentum carried by the quarks, and
ki⊥ their transverse momenta. Furthermore, b† qi, λ and bqi, λ are creation and annihilation
operators of a quark with flavour q, helicity λ and color i, respectively. In the following,
we will describe the above light-cone wave-function amplitudes in a light-cone constituent
quark model (CQM) following Ref. [44]. Working in the so-called “uds” basis [75, 76] the
proton state is given in terms of a completely symmetrized wave function of the form

|P ↑〉 = |P ↑〉uud + |P ↑〉udu + |P ↑〉duu . (8)

In this symmetrization, the state |P ↑〉udu is obtained from |P ↑〉uud by interchanging the
second and third spin and space coordinates as well as the indicated quark type, with a
similar interchange of the first and third coordinates for |P ↑〉duu.

Following the derivation outlined in Ref. [64], we find that the uud component of the
light-cone state of the proton can be written as

|P,Λ〉uud =
∑

λi,ci

∫
d[1]d[2]d[3]Ψ

Λ,[f ]
uud ({xi,ki⊥;λi})

ǫijk√
6
u†i, λ1

(1)u†j, λ2
(2)d†k, λ3

(3)|0〉 . (9)

In Eq. (9), assuming SU(6) spin-flavor symmetry, we can factorize the LCWF Ψ
Λ,[f ]
uud ({xi,ki⊥;λi})

in a momentum-dependent wave function and a spin-dependent part, i.e.,

Ψ
Λ,[f ]
uud ({xi,ki⊥;λi}) = ψ̃({xi,ki⊥})

1√
3
Φ̃Λ(λ1, λ2, λ3). (10)

In the above equation the momentum-dependent function is given by

ψ̃({xi,ki⊥}) = 2(2π)3
[

1

M0

ω1ω2ω3

x1x2x3

]1/2
ψ({xi,ki⊥}), (11)

where ψ({xi,ki⊥}) is symmetric under exchange of the momenta of any quark pairs and
is spherically symmetric, ωi is the free-quark energy, and M0 =

∑
i ωi is the mass of the

non-interacting three-quark system. The spin-dependent part in Eq. (10) is given by

Φ̃Λ(λ1, λ2, λ3) =
∑

µ1µ2µ3

〈1/2, µ1; 1/2, µ2|1, µ1 + µ2〉〈1, µ1 + µ2; 1/2, µ3|1/2,Λ〉

×D1/2∗
µ1λ1

(Rcf(x1,k1⊥))D
1/2∗
µ2λ2

(Rcf(x2,k2⊥))D
1/2∗
µ3λ3

(Rcf(x3,k3⊥)). (12)
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In Eq. (12), D
1/2
λµ (Rcf(x,k⊥)) is the matrix element of the Melosh rotation Rcf [77]

D
1/2
λµ (Rcf(x,k⊥)) = 〈λ|Rcf(x,k⊥)|µ〉

= 〈λ|m+ xM0 − iσ · (ẑ × k⊥)√
(m+ xM0)2 + k 2

⊥

|µ〉. (13)

The Melosh rotation corresponds to the unitary transformation which converts the Pauli
spinors of the quark in the nucleon rest-frame to the light-front spinor. In particular, the
spin wave function of Eq. (12) is obtained from the transformation of the non-relativistic
spin wave function with zero orbital angular momentum component. The relativistic spin
effects are immediately evident in the presence of the spin-flip term iσ · (ẑ×k⊥) in Eq. (13).
Such a term generates non-zero orbital angular momentum, and, as a consequence of total
angular momentum conservation, total quark helicity different from the nucleon helicity.
Making explicit the dependence on the quark helicities, the spin wave function of Eq. (12)
takes the following values:

Φ̃↑ (↑, ↑, ↓) =
∏

i

1√
N(xi,ki⊥)

1√
6
(2a1a2a3 + a1k

−
2 k

+
3 + a2k

−
1 k

+
3 ), (14)

Φ̃↑ (↑, ↓, ↑) =
∏

i

1√
N(xi,ki⊥)

1√
6
(−a1a2a3 + a3k

−
1 k

+
2 − 2a1k

+
2 k

−
3 ), (15)

Φ̃↑ (↓, ↑, ↑) =
∏

i

1√
N(xi,ki⊥)

1√
6
(−a1a2a3 + a3k

+
1 k

−
2 − 2a2k

+
1 k

−
3 ), (16)

Φ̃↑ (↑, ↓, ↓) =
∏

i

1√
N(xi,ki⊥)

1√
6
(a1a2k

+
3 − k−1 k

+
2 k

+
3 − 2a1a3k

+
2 ), (17)

Φ̃↑ (↓, ↑, ↓) =
∏

i

1√
N(xi,ki⊥)

1√
6
(−k+1 k−2 k+3 + a1a2k

+
3 − 2a2a3k

+
1 ), (18)

Φ̃↑ (↓, ↓, ↑) =
∏

i

1√
N(xi,ki⊥)

1√
6
(a2a3k

+
1 + a1a3k

+
2 + 2k+1 k

+
2 k

−
3 ), (19)

Φ̃↑ (↑, ↑, ↑) =
∏

i

1√
N(xi,ki⊥)

1√
6
(−a1a3k−2 − a2a3k

−
1 + 2a1a2k

−
3 ), (20)

Φ̃↑ (↓, ↓, ↓) =
∏

i

1√
N(xi,ki⊥)

1√
6
(−a2k+1 k+3 − a1k

+
2 k

+
3 + 2a3k

+
1 k

+
2 ), (21)

where ai = (m+ xiM0), and N(xi,ki⊥) = [(m+ xiM0)
2 + k2

i⊥].
Taking into account the quark-helicity dependence in Eqs. (14)-(21), the nucleon state

can be mapped out into the different angular momentum components. After straightforward
algebra, one finds the following representation for the nucleon wave-function amplitudes in
the light-cone CQM

ψ(1)(1, 2, 3) = ψ̃({xi,ki⊥})

×
∏

i

1√
N(xi,ki⊥)

1√
3
(−a1a2a3 + a3k1⊥ · k2⊥ + 2a1k1⊥ · k2⊥ + 2a1k

2
2⊥),

(22)

ψ(2)(1, 2, 3) = ψ̃({xi,ki⊥})
∏

i

1√
N(xi,ki⊥)

1√
3
(a3 + 2a1), (23)
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ψ(3)(1, 2, 3) = −ψ̃({xi,ki⊥})
∏

i

1√
N(xi,ki⊥)

1√
3
(a1a2 + k2

2⊥), (24)

ψ(4)(1, 2, 3) = −ψ̃({xi,ki⊥})
∏

i

1√
N(xi,ki⊥)

1√
3
(a1a2 + 2a3a1 − k2

1⊥ − 2k1⊥ · k2⊥), (25)

ψ(5)(1, 2, 3) = ψ̃({xi,ki⊥})
∏

i

1√
N(xi,ki⊥)

1√
3
(a1a3), (26)

ψ(6)(1, 2, 3) = ψ̃({xi,ki⊥})
∏

i

1√
N(xi,ki⊥)

1√
3
a2. (27)

Notice that the results in Eqs. (22)-(27) follow from the spin and orbital angular momentum
structure generated from the Melosh rotations, and are independent on the functional form
of the momentum-dependent wave function.

III. SIVERS FUNCTION

The quark Sivers function can be calculated from the following definition

f⊥
1T (x,k

2
⊥) = −i(kx + iky)

M

2k 2
⊥

∫
dξ−d2ξ⊥

(2π)3
e−i(ξ−k+−ξ⊥·k⊥)〈P ↑ |ψ̄(ξ−, ξ⊥)L†

ξγ
+L0ψ(0)|P ↓〉 .

(28)
As we discussed in the Introduction, the gauge link is crucial to obtain a non-zero Sivers
function. In the covariant gauge, the gauge link can be reduced to the light-cone gauge
link1. According to the light-cone wave function model, in the following calculations we
choose the light-cone gauge A+ = 0, where the gauge link reduces to a transverse gauge link
at ξ− = ∞, i.e.,

Lξ|A+=0 = P exp

(
−ig

∫ ∞

ξ⊥

d2ζ⊥ ·A⊥(ξ
− = ∞, ζ⊥)

)
. (29)

In the Sivers function of Eq. (28), we will expand the above gauge link to take into account
the contribution from the one-gluon exchange diagram. Furthermore, in the light-cone gauge
the gluon propagator takes the following form

dµν(q) = −gµν + nµqν + nνqµ

[n · q] , (30)

where n is the light-like vector n2 = 0 and n · q = q+. The gluon propagator has a light-
cone singularity, as can be seen from the above equation. We will adopt the principal-value
prescription to regulate this singularity. We have also checked that the final results do not

1 An off-light-cone gauge link has to be used to regulate the light-cone singularities for higher-order calcu-

lations. In this paper, we will not encounter this singularity. Therefore, we will simply adopt the gauge

link along the light-cone direction in covariant gauge and the transverse gauge link at spatial infinity in

light-cone gauge.
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+h.c.

P, Λ

k, λ

k4, λ4 k3, λ3

k1, λ1

P, Λ′

q

FIG. 1. The leading contribution from the one-gluon exchange mechanism to the T-odd distribution

functions.

depend on the prescription.2 Under this prescription, there is no phase contribution from
the above propagator. However, the transverse gauge link expansion, when combining with
the n−q⊥/n · q factor of the above equation, leads to the following expression

eiq
+∞

q+
= iπδ(q+) . (31)

This contribution provides the phase needed to generate a non-zero Sivers function. The
dominance in the gluon propagator of the n−q⊥/n · q, with the ⊥ index coming from the
contraction with the transverse gauge link, also simplifies the interactions between the quark
fields, since the quark scattering conserves the helicity.

Finally, we obtain the following expression for the quark Sivers function

f⊥ q
1T (x,k 2

⊥) = −g2k
x + iky

k 2
⊥

M

2

1

(2π)11
1√

(2k+)(2k+1 )

∫
dk+3 d

2 k3⊥√
(2k+3 )(2k

+
4 )

∫
d2 q⊥

×
{ 1

q 2
⊥

∑

λ1,λ3

∑

f

∑

i.j

∑

k,l

T a
ijT

b
klδab〈P ↑ |b† qiλ1

(k1)b
q
jλ1

(k)b† fkλ3
(k3)b

f
lλ3

(k4)|P ↓〉
}
, (32)

where the quark momenta are defined as k1 = k − q, k4 = k3 − q, T a is the SUc(6) Gell-
Mann matrix and g is the gluon coupling with the quark field. Equation (32) corresponds
to the diagrams in Fig. 1 with λ = λ1 and λ4 = λ3, for the helicity of the interacting and
spectator quarks, respectively, and Λ = −Λ′ for the helicity of the nucleon in the initial
and final states. A few comments are in order to explain the above derivations. First, we
have made an approximation for the interaction vertex between the gauge field from the
gauge link and the quark fields in the proton wave function, by the covariant interaction
form. In principle, we shall use the light-cone time-order perturbation theory to describe
this interaction. However, we expect the modification being beyond the approximation we
made in modelling the light-cone wave function itself. Nevertheless, it will be interesting to
check how large these effects would be. Second, we used the perturbation theory to calculate
the final-state interaction effects. For numerical estimate, we choose a reasonable value for
the strong coupling constant (see Sec. V). Meanwhile, we notice it may be not appropriate

2 For example, if we choose the so-called advanced boundary condition for the gauge potential, the transverse

gauge link becomes unit, whereas the above gluon propagator generates phases which allow to recover the

previous results with the principal-value prescription.
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to use a perturbative coupling for this non-perturbative calculations. We regarded this as
an important theoretical uncertainty, which exists in all model calculations of the Sivers
function.

As we discussed, in Eq. (32) the quark helicity is conserved. On the other side, the
hadron helicity flips from the initial to the final state. As a consequence, non-zero results
for the Sivers function can be obtained only with a transfer of one unit of orbital angular
momentum between the initial and the final nucleon states.
Inserting in Eq. (32) the light-cone wave-function amplitude decomposition of the nucleon
state introduced in Sec. II, one finds the following results in terms of the amplitudes ψ(i)

f⊥ q
1T (x,k 2

⊥) = −2

3
g2M

kx + iky

k 2
⊥

∫
d2 q⊥

(2π)2
1

q 2
⊥

∫
dx′
∫

d2t′⊥

∫
d[1]d[2]d[3]

√
x1x2x3 F⊥ q.

(33)

The function F⊥ q for u quark is given by

F⊥u = A(1,2)φ(3,4)(1, 2, 3)−A(3,4)φ(1,2)(1, 2, 3)− A(5)φ(6)(1, 2, 3) + A(6)φ(5)(1, 2, 3), (34)

where

φ(1,2)(1, 2, 3) = ψ(1)(1, 2, 3)− i(kx1k
y
2 − ky1k

x
2 )ψ

(2)(1, 2, 3),

φ(3,4)(1, 2, 3) = k−1 ψ
(3)(1, 2, 3) + k−2 ψ

(4)(1, 2, 3),

φ(5)(1, 2, 3) = k+2 ψ
(5)(1, 2, 3)− k+3 ψ

(5)(1, 3, 2),

φ(6)(1, 2, 3) = k−1 k
−
3 ψ

(6)(1, 2, 3)− k−1 k
−
2 ψ

(6)(1, 3, 2). (35)

The functions A in Eq. (34) are defined through

A(1,2) = δ3(k − k1)
[
δ3(t′ − k2)φ

(1,2)∗(2̂, 1′′, 3) + δ3(t′ − k3)φ
(1,2)∗(2, 1′′, 3̂)

]

+δ3(k − k2)
[
δ3(t′ − k1)

(
2φ(1,2)∗(2′′, 1̂, 3) + φ(1,2)∗(3, 1̂, 2′′)

)

+δ3(t′ − k3)
(
2φ(1,2)∗(2′′, 1, 3̂) + φ(1,2)∗(3̂, 1, 2′′)

)]

+δ3(k − k3)
[
δ3(t′ − k1)

(
φ(1,2)∗(2, 1̂, 3′′) + φ(1,2)∗(3′′, 1̂, 2)

)

+δ3(t′ − k2)
(
φ(1,2)∗(2̂, 1, 3′′) + φ(1,2)∗(3′′, 1, 2̂)

)]
,

A(3,4) = δ3(k − k2)
[
δ3(t′ − k1)φ

(3,4)∗(2′′, 1̂, 3) + δ3(t′ − k3)φ
(3,4)∗(2′′, 1, 3̂)

]

+δ3(k − k1)
[
δ3(t′ − k2)

(
2φ(3,4)∗(2̂, 1′′, 3) + φ(3,4)∗(2̂, 3, 1′′)

)

+δ3(t′ − k3)
(
2φ(3,4)∗(2, 1′′, 3̂) + φ(3,4)∗(2, 3̂, 1′′)

)
]
]

+δ3(k − k3)
[
δ3(t′ − k1)

(
φ(3,4)∗(2, 1̂, 3′′) + φ(3,4)∗(2, 3′′, 1̂)

)

+δ3(t′ − k2)
(
φ(3,4)∗(2̂, 1, 3′′) + φ(3,4)∗(2̂, 3′′, 1)

)]
,
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A(5) = δ3(k − k1)
[
δ3(t′ − k2)

(
φ(5)∗(1′′, 2̂, 3) + φ(5)∗(2̂, 1′′, 3)

)

+δ3(t′ − k3)
(
φ(5)∗(1′′, 2, 3̂) + φ(5)∗(2, 1′′, 3̂)

)]

+δ3(k − k2)
[
δ3(t′ − k1)

(
φ(5)∗(1̂, 2′′, 3) + φ(5)∗(2′′, 1̂, 3)

)

+δ3(t′ − k3)
(
φ(5)∗(1, 2′′, 3̂) + φ(5)∗(2′′, 1, 3̂)

)]
,

A(6) = δ3(k − k1)
[
δ3(t′ − k2)

(
φ(6)∗(1′′, 2̂, 3) + φ(6)∗(2̂, 1′′, 3)

)

+δ3(t′ − k3)
(
φ(6)∗(1′′, 2, 3̂) + φ(6)∗(2, 1′′, 3̂)

)]

+δ3(k − k2)
[
δ3(t′ − k1)

(
φ(6)∗(1̂, 2′′, 3) + φ(6)∗(2′′, 1̂, 3)

)

+δ3(t′ − k3)
(
φ(6)∗(1, 2′′, 3̂) + φ(6)∗(2′′, 1, 3̂)

)]
, (36)

where the quark coordinates are ı′′ = (x,k⊥ − q⊥), and ı̂ = (x′, t ′
⊥ + q⊥), δ

3(k − ki) =
δ(x− xi)δ

2(k⊥ − ki⊥) and we used the notation δ3(t′ − ki) = δ(x′ − xi)δ
2(t ′

⊥ − ki⊥). In the
above equations, the complex conjugate only acts on the wave function ψ(i).

In Eq. (33), the contributions from the functions A(1,2) and A(3,4) describe the interference
between S and P waves, while the terms with A(5) and A(6) correspond to the contribution
from P −D wave interference.

Similarly for the d-quark, one has

F⊥ d = B(1,2)φ(3,4)(1, 2, 3)− B(3,4)φ(1,2)(1, 2, 3)− B(5)φ(6)(1, 2, 3) +B(6)φ(5)(1, 2, 3), (37)

where the terms with B(1,2) and B(3,4) describe the interference between S and P waves, while
the terms with B(5) and B(6) correspond to the contribution from P −D wave interference.
The explicit expression for these functions is

B(1,2) = δ3(k − k3)
[
δ3(t′ − k2)φ

(1,2)∗(2̂, 1, 3′′) + δ3(t′ − k1)φ
(1,2)∗(2, 1̂, 3′′)

]

+δ3(k − k1)
[
δ3(t′ − k2)

(
φ(1,2)∗(2̂, 1′′, 3) + φ(1,2)∗(3, 1′′, 2̂)

)

+δ3(t′ − k3)
(
φ(1,2)∗(2, 1′′, 3̂) + φ(1,2)∗(3̂, 1′′, 2)

)]
,

B(3,4) = δ3(k − k3)
[
δ3(t′ − k1)φ

(3,4)∗(2, 1̂, 3′′) + δ3(t′ − k2)φ
(3,4)∗(2̂, 1, 3′′)

]

+δ3(k − k2)
[
δ3(t′ − k1)

(
φ(3,4)∗(2′′, 1̂, 3) + φ(3,4)∗(2′′, 3, 1̂)

)

+δ3(t′ − k3)
(
φ(3,4)∗(2′′, 1, 3̂) + φ(3,4)∗(2′′, 3̂, 1)

)]
,

B(5) = δ3(k − k3)
[
δ(t′ − k2)

(
φ(5)∗(1, 2̂, 3′′) + φ(5)∗(2̂, 1, 3′′)

)

+δ(t′ − k1)
(
φ(5)∗(1̂, 2, 3′′) + φ(5)∗(2, 1̂, 3′′)

)]
,

B(6) = δ3(k − k3)
[
δ3(t′ − k1)

(
φ(6)∗(1̂, 2, 3′′) + φ(6)∗(2, 1̂, 3′′)

)

+δ3(t′ − k2)
(
φ(6)∗(1, 2̂, 3′′) + φ(6)∗(2̂, 1, 3′′)

)]
. (38)
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In the above equations, the complex conjugate only acts on the wave function ψ(i).
Using the CQM expressions for the three-quark light cone amplitudes given in Sec. II, we

obtain the following results for the Sivers function

f⊥ q
1T (x,k 2

⊥) = −2

3
g2M

kx + iky

k 2
⊥

∫
d2q⊥

(2π)2
1

q 2
⊥

∫
dx′
∫

d2t′⊥

∫
d[1]d[2]d[3]

√
x1x2x3

×δ(x− x3)δ
2(k⊥ − k3⊥)δ(x

′ − x1)δ
2(t ′

⊥ − k1⊥)ψ
∗({x′i}, {k ′

i⊥})ψ({xi}, {ki⊥})

×3δτ3τq

{
δτq1/2X

00({k ′
i}, {ki}) +

1

3
[δτq1/2 + 2δτq−1/2]X

11({k ′
i}, {ki})

}
, (39)

where the quark momenta in the final state are (x′3 = x,k ′
3⊥ = k3⊥ − q⊥), (x

′
1 = x′,k ′

1 =
t ′
⊥ + q⊥), (x

′
2 = x2,k

′
2⊥ = k2⊥). In Eq. (39), the functions X00 and X11 are given by

X00({k ′
i}, {ki}) =

3∏

i=1

N−1(k ′
i)N

−1(ki)(i B3x +B3y)(A1A2 +B1 ·B2), (40)

X11({k ′
i}, {ki}) =

3∏

i=1

N−1(k ′
i)N

−1(ki)

×1

3

{
− (A1A2 +B1 ·B2)(iB3x +B3y)

+ 2B1 ·B3(iB2x +B2y) + 2B2 ·B3(iB1x +B1y)

+ 2i
[
A3A1(iB2x +B2y) + A3A2(iB1x +B1y)

]}
, (41)

where

Ai = (m+ x′iM
′
0)(m+ xiM0) + k′yi k

y
i + k′xi k

x
i ,

Bi,x = −(m+ x′iM
′
0)k

y
i + (m+ xiM0)k

′y
i ,

Bi,y = (m+ x′iM
′
0)k

x
i − (m+ xiM0)k

′x
i ,

Bi,z = k′xi k
y
i − k′yi k

x
i . (42)

IV. BOER-MULDERS FUNCTION

The calculation of Sec. III can be repeated for the Boer-Mulders function, defined from
the following quark correlation function

h⊥1 (x,k
2
⊥) = ǫijkj

M

2k 2
⊥

∫
dξ−d2ξ⊥

(2π)3
e−i(ξ−k+−ξ⊥·k⊥)1

2

∑

Λ

〈PΛ|ψ̄(ξ−, ξ⊥)L†
ξiσ

i+γ5L0ψ(0)|PΛ〉 .

(43)
Also in this case we expand the gauge link up to the next-to leading order, and following the
same method we used in the calculation of the Sivers function, we find for the Boer-Mulders
function

h⊥ q
1 (x,k 2

⊥) = −g2k
x − iky

k 2
⊥

M

2

1

(2π)11
1√

(2k+)(2k+1 )

∫
dk+3 d

2k3⊥√
(2k+3 )(2k

+
4 )

∫
d2q⊥

×
{ 1

q 2
⊥

∑

Λ,λ3

∑

f

∑

i.j

∑

k,l

T a
ijT

b
klδab〈PΛ|b† qi, ↑(k1)b

q
j, ↓(k)b

† f
k, λ3

(k3)b
f
l, λ3

(k4)|PΛ〉
}
, (44)
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where the quark momenta are defined as k1 = k − q, k4 = k3 − q. The above equation
corresponds to the diagram of Fig. 1 with λ = −λ1 and λ4 = λ3 for the helicity of the
interacting and spectator quarks, respectively, and Λ = Λ′ for the helicity of the nucleon
in the initial and final states, i.e. the helicity is conserved at the quark-gluon vertex, while
the helicity of the struck quark flips from the initial to the final state. Since the nucleon
state has the same helicity in the initial and final state, the quark helicity flip must be
compensated by a transfer of one unit of orbital angular momentum.

Inserting in Eq. (44) the light-cone wave-function amplitude decomposition of the nucleon
state introduced in Sec. II, one finds the following results in terms of the amplitudes ψ(i)

h⊥ q
1 (x,k 2

⊥) =
2

3
g2M

kx − iky

k 2
⊥

∫
d2q⊥

(2π)2
1

q 2
⊥

∫
dx′
∫

d2t ′
⊥

∫
d[1]d[2]d[3]

√
x1x2x3 H⊥ q,

(45)

where the function H⊥ q for the up quark is

H⊥u = −C(1,2)φ̃(3,4)(1, 2, 3) + C̃(3,4)φ(1,2)(1, 2, 3)− C(3,4)φ̃(6)(1, 2, 3)

+C̃(6)φ(3,4)(1, 2, 3) + C̃(1,2)φ(5)(1, 2, 3)− C(5)φ̃(1,2)(1, 2, 3), (46)

with

φ̃(1,2)(1, 2, 3) = ψ(1)(1, 2, 3) + i(kx1k
y
2 − ky1k

x
2 )ψ

(2)(1, 2, 3),

φ̃(3,4)(1, 2, 3) = k+1 ψ
(3)(1, 2, 3) + k+2 ψ

(4)(1, 2, 3),

φ̃(6)(1, 2, 3) = k+1 k
+
3 ψ

(6)(1, 2, 3)− k+1 k
+
2 ψ

(6)(1, 3, 2). (47)

In Eq. (46), the terms containing C(1,2) and C(3,4) describe the contribution from S and
P wave interference, while C(5) and C(6) are associated with the P − D wave interference
terms. The explicit expression for these functions is

C(1,2) = δ3(k − k2)
[
δ3(t′ − k1)

(
φ(1,2)∗(1̂, 3, 2′′) + 2φ(1,2)∗(2′′, 3, 1̂)

)

+δ3(t′ − k3)
(
φ(1,2)∗(1, 3̂, 2′′) + 2φ(1,2)∗(2′′, 3̂, 1)

)]

+δ3(k − k3)
[
δ3(t′ − k1)φ

(1,2)∗(3′′, 2, 1̂) + δ3(t′ − k2)φ
(1,2)∗(3′′, 2̂, 1)

]
,

C̃(3,4) = δ3(k − k1)
[
δ3(t′ − k2)

(
φ̃(3,4)∗(3, 2̂, 1′′) + 2φ̃(3,4)∗(3, 1′′, 2̂)

)

+ δ3(t′ − k3)
(
φ̃(3,4)∗(3̂, 2, 1′′) + 2φ̃(3,4)∗(3̂, 1′′, 2)

)]

+δ3(k − k3)
[
δ3(t′ − k1)φ̃

(3,4)∗(1̂, 3′′, 2) + δ3(t′ − k2)φ̃
(3,4)∗(1̂, 3′′, 2)

]
,

C(3,4) = δ3(k − k1)
[
δ3(t′ − k2)φ

(3,4)∗(1′′, 2̂, 3) + δ3(t′ − k3)φ
(3,4)∗(1′′, 2, 3̂)

]

+δ3(k − k2)
[
δ3(t′ − k1)φ

(3,4)∗(2′′, 1̂, 3) + δ3(t′ − k3)φ
(3,4)∗(2′′, 1, 3̂)

]
,

C̃(6) = δ3(k − k1)
[
δ3(t′ − k2)

(
φ̃(6)∗(1′′, 2̂, 3) + φ̃(6)∗(2̂, 1′′, 3)

)

+ δ3(t′ − k3)
(
φ̃(6)∗(1′′, 2, 3̂) + φ̃(6)∗(2, 1′′, 3̂)

)]
,
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C̃(1,2) = δ3(k − k1)
[
δ3(t′ − k2)φ̃

(1,2)∗(2̂, 1′′, 3) + δ3(t′ − k3)φ̃
(1,2)∗(2, 1′′, 3̂)

]

+δ3(k − k2)
[
δ3(t′ − k1)φ̃

(1,2)∗(1̂, 2′′, 3) + δ3(t′ − k3)φ̃
(1,2)∗(1, 2′′, 3̂)

]
,

C(5) = δ3(k − k2)
[
δ3(t′ − k1)

(
φ(5)∗(1̂, 2′′, 3) + φ(5)∗(2′′, 1̂, 3)

)

+δ3(t′ − k3)
(
φ(5)∗(1, 2′′, 3̂) + φ(5)∗(2′′, 1, 3̂)

)]
. (48)

In the above equations, the complex conjugate only acts on the wave function ψ(i).
Analogously, the function H⊥ for the down quark is

H⊥ d = D(1,2)φ̃(3,4)(1, 2, 3)− D̃(3,4)φ(1,2)(1, 2, 3) +D(3,4)φ̃(6)(1, 2, 3)

−D̃(6)φ(3,4)(1, 2, 3) + D̃(1,2)φ(5)(1, 2, 3)−D(5)φ̃(1,2)(1, 2, 3), (49)

where the S−P wave interference contribution comes from the terms proportional to D(1,2)

and D(3,4), while the remaining two terms give the contribution from the interference of P
and D waves. The function D in Eq. (49) are defined as

D(1,2) = δ3(k − k3)
[
δ3(t′ − k1)φ

(1,2)∗(1̂, 2, 3′′) + δ3(t′ − k2)φ
(1,2)∗(1, 2̂, 3′′)

]
,

D̃(3,4) = δ3(k − k3)
[
δ3(t′ − k1)φ̃

(3,4)∗(1̂, 2, 3′′) + δ3(t′ − k2)φ̃
(3,4)∗(1, 2̂, 3′′)

]
,

D(3,4) = δ3(k − k3)
[
δ3(t′ − k1)

(
φ(3,4)∗(3′′, 2, 1̂) + φ(3,4)∗(3′′, 1̂, 2)

)

+ δ3(t′ − k2)
(
φ(3,4)∗(3′′, 2̂, 1) + φ(3,4)∗(3′′, 1, 2̂)

)]
,

D̃(6) = δ3(k − k1)
[
δ3(t′ − k2)

(
φ̃(6)∗(3, 2̂, 1′′) + φ̃(6)∗(2̂, 3, 1′′)

)

+ δ3(t′ − k3)
(
φ̃(6)∗(3̂, 2, 1′′) + φ̃(6)∗(2, 3̂, 1′′)

)]
,

D̃(1,2) = δ3(k − k2)
[
δ3(t′ − k1)

(
φ̃(1,2)∗(1̂, 2′′, 3) + φ̃(1,2)∗(3, 2′′, 1̂)

)

+ δ3(t′ − k3)
(
φ̃(1,2)∗(1, 2′′, 3̂) + φ̃(1,2)∗(3̂, 2′′, 1)

)]
,

D(5) = δ3(k − k2)
[
δ3(t′ − k1)

(
φ(5)∗(1̂, 2′′, 3) + φ(5)∗(3, 2′′, 1̂)

)

+δ3(t′ − k3)
(
φ(5)∗(1, 2′′, 3̂) + φ(5)∗(3̂, 2′′, 1)

)]
. (50)

In the above equations, the complex conjugate only acts on the wave function ψ(i).
In the model for the three-quark light cone amplitudes introduced in Sec. II, we find the

following explicit results

h⊥ q
1 (x,k 2

⊥) =
2

3
g2M

kx − iky

k2
⊥

∫
d2q⊥

(2π)2
1

q 2
⊥

∫
dx′
∫

d2t ′
⊥

∫
d[1]d[2]d[3]

√
x1x2x3

×δ(x− x3)δ
2(k⊥ − k3⊥)δ(x

′ − x1)δ
2(t ′

⊥ − k ′
1⊥)ψ

∗({x′i}, {k′
i⊥})ψ({xi}, {ki⊥})

×3δτ3τq

{
δτq1/2X̃

00({k ′
i}, {ki}) +

1

3
[δτq1/2 + 2δτq−1/2]X̃

11({k ′
i}, {ki})

}
, (51)
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where the quark momenta in the final state are (x′3 = x,k ′
3⊥ = k3⊥ − q⊥), (x

′
1 = x′,k ′

1 =

t ′
⊥ + q⊥), (x

′
2 = x2,k

′
2⊥ = k2⊥). In Eq. (51), the functions X̃00 and X̃11 are given by,

X̃00({k ′
i}, {ki}) =

3∏

i=1

N−1(k ′
i)N

−1(ki)
[
(A1A2 +B1 ·B2)Ã3

]
, (52)

X̃11({k ′}, {k})
)
=

3∏

i=1

N−1({k ′
i})N−1({ki})

×1

3

[
(3A1A2 −B1 ·B2)Ã3 + 2(A1B2,x + A2B1,x)B̃3,x

+2(A1B2,y + A2B1,y)B̃3,y + 2(A1B2,z + A2B1,z)B̃3,z

]
, (53)

where the functions Ai and Bi are defined in Eq. (42), and

Ã3 = (m+ x3M0)(k
′x
3 + ik′y3 )− (m+ x′3M

′
0)(k

x
3 + iky3),

B̃x
3 = −i(m+ x′3M

′
0)(m+ x3M0) + i(k′x3 + ik′y3 )(k

x
3 + iky3),

B̃y
3 = (m+ x′3M

′
0)(m+ x3M0) + (k′3,x + ik′3y)(k

x
3 + iky3),

B̃z
3 = i(m+ x′3M

′
0)(k

x
3 + iky3) + i(m+ x3M0)(k

′x
3 + ik′y3 ). (54)

V. RESULTS AND DISCUSSION

The formalism described in the previous sections is applied in the following to a specific
CQM, adopting a power-law form for the momentum-dependent part of the light-cone wave
function, i.e.

ψ({xi,ki⊥}) =
N ′

(M2
0 + β2)γ

, (55)

with N ′ a normalization factor. In Eq. (55), the scale β, the parameter γ for the power-law
behaviour, and the quark mass m are taken from Ref. [78], i.e., β = 0.607 GeV, γ = 3.4
and m = 0.267 GeV. According to the analysis of Ref. [79] these values lead to a very
good description of many baryonic properties. The same parametrization of the momentum
dependent part of the LCWF in Eq. (55) has been successfully applied also in recent works
for the calculation of the electroweak properties of the nucleon [68], GPDs [26, 35, 64–66]
and T-even TMDs [44, 70].

In order to fix the coupling constant appearing in Eqs. (33) and (45), we need to determine
the hadronic scale of the model. This is achieved in a model independent way following the
prescription of Ref. [80], by matching the value of the momentum fraction carried by the
valence quarks, as computed in the model, with that obtained evolving backward the value
experimentally determined at large Q2. The strong coupling constant αS(Q

2) entering the
evolution code at NLO is computed by solving the NLO transcendental equation numerically,

ln
Q2

Λ2
NLO

− 4 π

β0 αs

+
β1
β2
0

ln

[
4 π

β0 αs

+
β1
β2
0

]
= 0 , (56)

as obtained from the renormalization group analysis [80, 81]. It differs from the more familiar
expression

αs(Q
2)

4π
=

1

β0 ln(Q2/Λ2
NLO)

(
1− β1

β2
0

ln ln(Q2/Λ2
NLO)

ln(Q2/Λ2
NLO)

)
, (57)
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FIG. 2. Results for the first transverse-momentum moment of the Sivers function, for up (left)

and down (right) quark, as function of x. The dashed curves show the results at the hadronic

scale of the model µ2
0 = 0.094 GeV2, and the solid curves correspond to the results after NLO

evolution to Q2 = 2.5 GeV2, using the evolution pattern of the unpolarized parton distribution.

The lighter and darker shaded areas are the uncertainty bands due to the statistical error of the

parametrizations of Ref. [50] and Ref. [30, 54], respectively. Both parametrizations refer to an

average scale of Q2 = 2.5 GeV2.

valid only in the limit Q2 ≫ Λ2
NLO, where ΛNLO is the so-called QCD scale parameter.

The hadronic scale, µ2
0, consistent with the presence of valence degrees of freedom only

is µ2
0 = 0.094 GeV2, with ΛNLO = 0.248 GeV. This corresponds to a value of the strong

coupling constant in Eq. (56) αS(µ
2
0)/(4π) = g2/(4π)2 = 0.14, and is consistent with the

analysis of Refs. [46–48] where a similar procedure was adopted.
The first transverse-momentum moments of the Sivers and Boer-Mulders functions are

shown in Figs. 2 and 3, using the definition

j(1)(x) =

∫
d2k⊥

k 2
⊥

2M2
j(x,k 2

⊥), (58)

with j = f⊥ q
1T and j = h⊥1 , respectively. In the figures the dashed curves correspond to the

results at the hadronic scale of the model µ2
0, while the solid curves are obtained by applying

a NLO evolution to Q2 = 2.5 GeV2, assuming for the first transverse-momentum moment
of the Sivers function the same anomalous dimension of the unpolarized parton distribution
and for the first transverse-momentum moment of the Boer-Mulders the evolution pattern
of the chiral-odd transversity distribution. Although these are not the exact evolution
patterns, this is the standard procedure adopted so far in model calculations [45–48] and
parametrizations [30, 50, 54] of the T-odd TMDs, since the exact evolution equations are
still under study [17, 82–86] and evolution codes for these distributions are not yet available.
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For the Sivers function in Fig. 2 we also show the results from recent parametrizations,
valid at an average scale of Q2 = 2.5 GeV2, obtained from a fit to available experimental
data on transverse single spin asymmetries for pion and kaon in semi-inclusive deep inelastic
scattering. In particular, the darker shaded area represents the uncertainty due to the
statistical errors in the parametrization of Ref. [50], while the lighter shaded area corresponds
to the same for Ref. [30, 54]. The model predictions for the contribution of u and d quarks are
of the same order of magnitude and opposite sign, and after evolution are well compatible
with the phenomenological parametrizations. The effects of the evolution are crucial to
reproduce the position of the peak at x ≈ 0.2 for both the u and d quark distributions, and
to rescale the magnitude of the distributions within the range of the parametrizations.

A non trivial constraint in model calculations of the Sivers function is given by the
Burkardt sum rule [87]

∑

q=u, d, s, g,···

∫
dx f

⊥ (1) q
1T (x,k 2

⊥) = 0 , (59)

which corresponds to require that the net (summed over all partons) transverse momentum
due to final-state interaction is zero [88]. Restricting the sum in Eq. (59) over the up- and
down-quark contributions, our model calculation of the Sivers function reproduces exactly
the sum rule.

In Fig. 3 we compare the model results for the absolute value of the Boer-Mulders function
with phenomenological parametrizations obtained from recent fits to available experimental
data. In particular, the dashed-dotted curve corresponds to the analysis of Refs. [89, 90] at
the average scale of Q2 = 2.4 GeV2 of the HERMES [91] and COMPASS [92, 93] measure-
ments of the cos 2φ asymmetry in SIDIS, while the short-dashed curve shows the results of
Refs. [94, 95] valid at Q2 ≈ 1 GeV2, obtained from a fit to pd [96] and pp [97] Drell-Yan data
measured by the E866/NuSea Collaboration, with the shaded area describing the variation
ranges allowed by positivity bounds. We note that the available data do not allow yet a
full fit of h⊥1 with its x and k 2

⊥ dependence and these phenomenological parametrizations
are only first attempts to extract information on this distribution. Upcoming experimental
SIDIS data also from JLab and plans for Drell-Yan experiments at GSI will play a crucial
role to better constrain these analysis. Our model predictions after the “approximate” evo-
lution to Q2 = 2.4 GeV2 are compatible with the phenomenological analysis of SIDIS data,
reproducing both the peak position and the behaviour in x, while are at variance with the
analysis of the Drell-Yan data. In particular we confirm the findings of Ref. [89] and the
expectations from various theoretical analysis [48, 59, 98–100], predicting the same sign for
both the up and down contributions, with the u component of h⊥1 larger in magnitude than
the corresponding component of f⊥

1T and the d components of h⊥1 and f⊥
1T with approximately

the same magnitude and opposite sign.
In Fig. 4 we show the decomposition of the Sivers and Boer-Mulders functions in the

contributions from the different partial-wave amplitudes of the nucleon LCWF. The dashed
curves correspond to the results from the interference of S and P waves, the dotted curves
show the contribution from P − D wave interference, and the solid curves are the total
results, sum of all the partial wave contributions. The S − P wave interference terms give
the dominant contribution to the Sivers function of both u and d quarks, while the P −D
wave interference terms contribute at most by 20% of the total results. On the other side,
the relative weight of the P −D wave interference terms increases in the case of the Boer-
Mulders function. It corresponds to 30% of the total results for the up-quark distribution
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FIG. 3. Results for the first transverse-momentum moment of the Boer-Mulders function, for

up (left) and down (right) quark, as function of x. The dashed curves show the results at the

hadronic scale of the model µ2
0 = 0.094 GeV2 and the solid curves correspond to the results after

NLO evolution to Q2 = 2.5 GeV2, using the evolution pattern of the transversity distribution.

The dashed-dotted curves are the results of the phenomenological parametrization of Refs. [89, 90]

at the average scale of Q2 = 2.4 GeV2, and the short-dashed curves correspond the results of

Refs. [94, 95] valid at Q2 ≈ 1 GeV2, with the shaded area describing the variation ranges allowed

by positivity bounds.

and becomes the dominant contribution in the case of down quark, reaching up to 60% of the
total result. We also note that, contrary to the case of T-even TMDs [44], the assumption
of SU(6) symmetry in the model does not imply any proportionality between the T-odd
distributions of up and down quark. As outlined in Ref. [48], this is due to the fact that
in the case of the T-odd functions one is using a two-body operator associated with FSI,
while for the T-even TMDs the proportionality results from the calculation with a one-body
operator.

In comparison with other model calculations, our light-cone model gives results which
are similar in shape but significantly different in magnitude from the predictions in the non
relativistic CQM of Refs. [46–48]. The main differences in this calculation can be traced
back to the use of covariant quantization and non-relativistic wave functions. This implies a
completely different helicity structure for the interacting and spectator quarks, which allows
for overlap of S − S, P − P and S − P components of the wave functions of the initial
and final proton state. Furthermore, the quark-gluon interaction vertex is treated non
relativistically. Analogous discrepancies are evident in the comparison of our predictions
with the results of the bag-model [47, 48, 58]. Here the calculation is fully relativistic,
but the main difference comes from the use of covariant quantization which again leads to
a different helicity structure for the quarks in the diagram of Fig. 1, with both helicity-
conserving (λ3 = λ4) and helicity-flip (λ3 = −λ4) contributions at the quark-gluon vertex.
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FIG. 4. Angular momentum decomposition of the first k⊥ moment of the Sivers function for the

up (left panel ) and down (right panel) quark. The dashed curves show the contribution from

the interference of S and P waves, and the dotted curves correspond to the contribution from the

interference of P and D waves. The solid curves are the total results, sum of all the partial-wave

contributions.

Finally, with respect to the diquark models of Refs. [40, 45] we have different magnitude
and shape for both the Sivers and Boer Mulders functions. The different magnitude might
be due to the different values for the quark-gluon coupling constant used in the calculations.
Note however that our results are at variance with the calculations in the diquark models
also for the relative magnitude between up- and down-quark contributions.

The dependence on x and k 2
⊥ of the Sivers and Boer-Mulders functions is shown in Figs. 5

and 6, respectively, for the separate up (left) and down (right) quark contributions.
The behaviour in k2

⊥ is very similar for the two distributions, and does not depend on the
quark flavour. For the T-odd distributions there also exist positivity bounds which read [101]

k2⊥
2M2

[
(f⊥

1T )
2 + (g⊥1T )

2
]
≤ 1

2

[
(f1)

2 − (g1L)
2
]
, (60)

k2⊥
2M2

[
(h⊥1 )

2 + (h⊥1L)
2
]
≤ 1

2

[
(f1)

2 − (g1L)
2
]
, (61)

where the (x,k2
⊥) dependence has been omitted, and f1, g1L, g

⊥
1T , and h

⊥
1L are T-even TMDs.

Using the results of the light-cone CQM for the T-even TMDs [44], we find that these
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constraints are satisfied.
The k 2

⊥-dependence shown in Figs. 5 and 6 is definitely not of Gaussian form. However,
following the exercise performed in Ref. [70] for the T-even distributions, it is interesting to
compare the model predictions for the mean square transverse momenta with the results of
the Gaussian model. We define the mean transverse momenta (n = 1) and the mean square
transverse momenta (n = 2) for the TMD j(x,k 2

⊥) as follows

〈kn⊥,j〉 =
∫
dx
∫
d2k⊥ k

n
⊥ j(x,k

2
⊥)∫

dx
∫
d2k⊥ j(x,k

2
⊥)

, (62)

where k⊥ = |k⊥|. The corresponding results for the T-odd distributions are shown in
Table V. In the Gaussian model the following relation holds

〈k2⊥〉
Gauss
=

4

π
〈k⊥〉2 , (63)

which implies that the ratio shown in the last column of Table V should be equal to one. The
model results deviates from unit by 10%. We also note that the mean transverse momenta
in Table V are quite small, much smaller than expected from phenomenological studies.
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TMD j 〈k⊥〉 in GeV 〈k2⊥〉 in GeV2 4〈k⊥〉2
π〈k2⊥〉

up down up down up down

f⊥
1T 0.22 0.24 0.071 0.084 0.90 0.90

h⊥1 0.23 0.24 0.077 0.080 0.90 0.91

TABLE I. The mean transverse momenta and the mean square transverse momenta of T-odd

TMDs, as defined in Eq. (62), from the light-cone CQM. If the transverse momenta in the TMDs

were Gaussian, then the result for the ratio in the third column would be unity, see text.
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FIG. 7. Spin density in the transverse-momentum plane for unpolarized quarks in a transversely

polarized nucleon. The left panel is for up quark, and the right panel for down quark.

This is due to the low scale of the model, and Sudakov effects are expected to make the k 2
⊥

distributions larger when evolving to larger and experimentally relevant scale.
In Fig. 7, we show the spin density in the transverse-momentum space of unpolarized up

(left panel) and down (right panel) quark in a transversely polarized nucleon, defined as

ρq
f⊥

1T

(k⊥) =

∫
dx

1

2

[
f q
1 (x,k

2
⊥) + Si

⊥ǫ
ijkj

1

M
f⊥ q
1T (x,k 2

⊥)

]
(64)

with S⊥ the nucleon transverse-polarization vector, and f q
1 (x, k

2
⊥) the monopole distribution

corresponding to spin densities for unpolarized quarks in an unpolarized target. When S⊥

points in the x̂ direction, the dipole contribution related to the Sivers function introduces a
large distortion on the monopole term, perpendicular to both the spin and the momentum
of the proton and with ooposite sign for up and down quarks. The corresponding average
transverse-momentum shift is defined as

〈ky〉q
f⊥

1T

=

∫
d2k⊥k

yρq
f⊥

1T

(k⊥)
∫
d2k⊥ρ

q

f⊥

1T

(k⊥)
(65)
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unpolarized nucleon. The left panel is for up quark, and the right panel for down quark.

and results

〈ky〉uf⊥

1T

=
M

2

∫
dxf

(1)⊥ u
1T (x) = −70.31MeV, 〈ky〉df⊥

1T

=M

∫
dxf

(1)⊥ d
1T (x) = 140.62MeV.

(66)

The fact that the absolute value of the average transverse momentum induced by the
Sivers function is twice as large for d quark than for u quark is just a consequence of
the Burkardt sum rule in Eq. (59). This intrinsic k⊥ shift is the analogous of the dipole
deformation related to the GPD E in impact-parameter space [63, 102]. Note that the
LCWF overlap representation of E, for vanishing longitudinal momentum transfer, is given
in terms of the same combinations of light-cone amplitudes parametrizing the Sivers function,
but evaluated for different values of quark variables [64, 72]. The values for the average
shifts in impact-parameter space within the present light-cone quark model were found
〈by〉u = κu/(2M) = 0.20 fm and 〈by〉d = κd/(M) = −0.33 fm [67], where κq is the quark
contribution to the proton anomalous magnetic moment.

Analogously, the spin density of transversely polarized quarks and unpolarized nucleon
is related to the Boer-Mulders effect by

ρq
h⊥

1

(k⊥, s⊥) =

∫
dx

1

2

[
f q
1 (x,k

2
⊥) + siǫijkj

1

M
hq⊥1 (x, k2⊥)

]
, (67)

where s⊥ is the quark transverse-polarization vector. In Fig. 8 we show the spin density
for quark polarization in the x̂ direction. Since the Boer-Mulders function is negative for
both up and down quarks, the sideway shift is always in the positive ŷ direction. The
corresponding average dipole distortion is

〈ky〉uh⊥

1

=
M

2

∫
dxh

(1)⊥ u
1 (x) = −159.40MeV, 〈ky〉dh⊥

1

=M

∫
dxh

(1)⊥ d
1 (x) = −215.73MeV.

(68)

Although the Boer-Mulders function is smaller in magnitude for down quark than for up
quark, one observes that the average sideways distortion for down quark is stronger. This is

20



because the monopole distribution related to f q
1 is twice as large for up quarks as for down

quarks, therefore adding the dipole contributions results in a more pronounced distortion
for down quarks than for up quarks. The corresponding dipole distribution in impact-
parameter space is described by the chiral odd GPDs ET + 2H̃T . As found in Ref. [66],
these GPDs for zero longitudinal momentum transfer are given by the same combination of
LCWFs which enter h⊥1T , but at different kinematics. The corresponding average distortion
in impact-parameter space is proportional to tensor anomalous magnetic moment κqT , and
in the present light-cone quark model is given by κuT /(2M) = 0.42 fm and κdT /(M) = 0.55 fm
for up and down quark, respectively [67].

VI. CONCLUSIONS

In this paper we have investigated the naive-time-reversal-odd quark distributions, the
quark Sivers and Boer-Mulders functions, in a light-cone quark model. The final-state in-
teraction effects are calculated by approximating the gauge link operator with a one-gluon
exchange interaction. In this framework, we have derived the general formalism for the T-odd
quark distributions in terms of overlap of light-cone wave function amplitudes describing the
different orbital angular momentum components of the nucleon state. This model indepen-
dent expressions are particularly suitable to emphasize the correlations of quark transverse
momentum and transverse polarizations of the nucleon and of the quark. For numerical
estimates, the nucleon light-cone wave-function has been constructed by assuming a light-
cone constituent quark model with SU(6) spin-flavor symmetry and a momentum-dependent
part which is spherically symmetric. Under this assumption the orbital angular momen-
tum content of the wave function is fully generated by the Melosh rotations which boost
the rest-frame spin into the light-cone. As a result, we found explicit expressions for the
light-cone amplitudes which match the analytic structure expected from model-independent
arguments [72–74]. The model dependence enters the choice of the momentum-dependent
part of the light-cone wave function. In this work, we adopted a phenomenological descrip-
tion, by assuming a specific functional form with parameters fitted to hadronic structure
constants. The same wave function was used to predict many other hadronic properties,
providing a good description of available experimental data, and being able to capture the
main features of the quark contribution to hadronic structure functions, like parton distri-
butions [35], generalized parton distributions [64–67], nucleon form factors [68], and T-even
transverse momentum dependent quark distributions [44, 70].
The corresponding results for the Sivers and Boer-Mulders function have been presented in
this paper by showing the decomposition into the contributions from different orbital angu-
lar momentum components. Both functions require a transfer of one unit of orbital angular
momentum between the initial and final states. In particular, the Sivers function for both
up and down quark is dominated by the interference of S- and P -wave components, while
the P −D wave interference terms contribute at most by 20% of the total results. On the
other side, the relative weight of the P −D wave interference terms increases in the case of
the Boer-Mulders function, in particular for the down-quark component. Furthermore, the
model results for the Sivers function satisfy exactly the so-called Burkardt sum rule, which
is a non-trivial constraint for model calculations and parametrizations.

In order to compare with phenomenological parametrizations obtained from a fit to avail-
able experimental data for semi-inclusive deep inelastic scattering and Drell-Yan processes,
we evolved the model results to the experimental scale. Since the exact evolution equations

21



for the T-odd quark distributions are still under study, we used those evolution equations
which seem most promising to be able to simulate the correct evolution. We evolved the
first transverse-momentum moment of the Sivers function by means of the evolution pattern
of the unpolarized parton distribution, while for the first transverse-momentum moment of
the Boer-Mulders we used the evolution pattern of the transversity. After evolution, the
model results are consistent with the available parametrizations, especially for the Sivers
function. There is agreement between the signs of the various flavor components, and also
for the magnitude and the position of the maxima in x. These findings encourage further
phenomenological applications of the model to describe azimuthal asymmetries in hadronic
reactions.

We also found that the x and k2
⊥ dependence is similar for the Sivers and Boer-Mulders

functions, and approximately independent on the quark flavor. In particular, the k2
⊥ is

not of Gaussian form. However, it is worthwhile to evaluate the degree of approximation
introduced by the Gaussian Ansatz within the model in the calculation of observables. This
task is left for future applications of the model.

Finally, we discussed the spin densities in the transverse-momentum space related to the
Sivers and Boer-Mulders effects, showing that they are consistent with the model results
for the corresponding spin densities in the impact-parameter space described by generalized
parton distributions.
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